Alanya Alaaddin Keykubat University | Rafet Kayış Faculty of Engineering Electrical-Electronics Engineering Department 2023-2024 Spring Semester

Syllabus						
Code/Name	Sec 402.38 / Static Power Conversion 2					
Туре	Elective					
Credit/ECTS	6/6					
Hour per Week	3					
Level/Year	Undergraduate/4					
Semester	Spring					
Classroom	A103					
Content	Voltage-fed inverters; waveshaping; PWM, stepped and square-waveforms, voltage regulation, harmonics. Current-fed inverters; analysis, effect of SCR turn-off time on voltage waveform, overlap. DC-DC switching converters; time-ratio control, effect of loading, parameter optimization. Device failure mechanisms. Thermal considerations, protection of switching elements.					
Prerequisites	None					
Textbooks	Primary Power Electronics, N. Mohan, T. M. Undeland, W.P. Robbins, John Wiley Publishing Co., 2003 Supplementary Fundamentals of Power Electronics, R.W. Erickson and D. Maksimovic, Kluwer, 2001,					
Objectives	 To comprehend basic dc-dc converter topologies and their operating characteristics To comprehend basic dc-ac converter topologies and their operating characteristics, harmonic characteristics To determine continuous and discontinuous operation modes and their conditions To determine the basic isolation requirements and derive the isolated converter topologies and derive their voltage transfer characteristics 					
Course Outcomes	In this course you will be able to: CO1 Characterize the inverter output voltage waveforms, calculate the fundamental component and for square wave mode of operation, evaluate the distortion CO2 Characterize the inverter output voltage waveforms for pwm mode of operation, investigate the harmonic spectrum CO3 Extend the concept from single to three-phase applications and evaluate the control and power flow issues					

Weekly Schedule of Topics

W	Торіс
1	Introduction to forced commutated circuits, Gate Turn-Off devices, DC/DC, DC/AC, AC/AC conversion, review of basic power electronics concepts
2	BJT, MOSFET, IGBT, IGCT, Switching pole, hard switching
3	Basic converter topologies, Voltage input-output function derivations
4-5	DC-DC Converter behavior
6-8	SMPS: DC/DC converters with isolation
9	Modelling and control of DC/DC converters: state-space averaging, voltage/current mode control, cascade control
10	DC/AC Converters (Inverters) Basics voltage source inverter, current source inverter, single phase half and full (H) bridge inverter

- 11 Modulation, sinusoidal PWM, harmonic spectrum, optimal PWM, phase displacement control
- 12-13 Three phase voltage source inverters, basic topology, six step operating mode.
- 14 Hard switching and soft switching, ZVS, ZCS, Resonant Converters

Contribution to Program Outcomes*

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011
C01	2	1	1	1	0	0	1	1	1	0	0
CO2	1	2	1	1	0	0	1	1	1	0	0
CO3	3	1	1	1	0	0	1	1	1	0	0
C04	0	1	0	0	0	0	1	1	0	0	0
C05	0	0	1	1	0	0	1	1	0	0	0

* Contribution Level | 0: None | 1: Very Low | 2: Low | 3: Medium | 4: High | 5: Very High

Requirements	Basic knowledge of Electromagnetic Field Theory					
Course Policy	 Be in the class on time. English should always be used to communicate with one another. At least 70% attendance is required, otherwise a grade of DZ will be assigned. 					
Cheating & Plagiarism	 Copying or letting someone copy your work on exams, assignments, or reports is cheating. Cutting and pasting text, figures and tables from web sources or any other electronic source is plagiarism. The consequence of academic dishonesty is to receive a grade of FF for the course. 					
Evaluation Instructor	Midterm <u>Final Exam</u> Total	40% <u>60%</u> 100%				
Name/Surname	Akın Uktav	Email	akin.oktav@alanya.edu.tr			

 Room
 209
 Office Hours
 W 11.30-12.30 | F 13.30-14.30

Prepared by Akın Uslu on February 5th, 2024.